Tension-free Dirac strings and steered magnetic charges in 3D artificial spin ice

Sabri Koraltan (Korresp. Autor*in), Florian Slanovc, Florian Bruckner, Cristiano Nisoli, Andrii V. Chumak, Oleksandr V. Dobrovolskiy, Claas Abert, Dieter Suess

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

3D nano-architectures presents a new paradigm in modern condensed matter physics with numerous applications in photonics, biomedicine, and spintronics. They are promising for the realization of 3D magnetic nano-networks for ultra-fast and low-energy data storage. Frustration in these systems can lead to magnetic charges or magnetic monopoles, which can function as mobile, binary information carriers. However, Dirac strings in 2D artificial spin ices bind magnetic charges, while 3D dipolar counterparts require cryogenic temperatures for their stability. Here, we present a micromagnetic study of a highly frustrated 3D artificial spin ice harboring tension-free Dirac strings with unbound magnetic charges at room temperature. We use micromagnetic simulations to demonstrate that the mobility threshold for magnetic charges is by 2 eV lower than their unbinding energy. By applying global magnetic fields, we steer magnetic charges in a given direction omitting unintended switchings. The introduced system paves the way toward 3D magnetic networks for data transport and storage.
OriginalspracheEnglisch
Aufsatznummer125
Seitenumfang8
Fachzeitschriftnpj Computational Materials
Jahrgang7
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 5 Aug. 2021

ÖFOS 2012

  • 103018 Materialphysik

Zitationsweisen