Projekte pro Jahr
Abstract
We study the spectral bounds of self-adjoint operators on the Hilbert space of square-integrable functions, arising from the representation theory of the Heisenberg group. Interestingly, starting either with the von Neumann lattice or the hexagonal lattice of density 2, the spectral bounds obey well-known arithmetic–geometric mean iterations. This follows from connections to Jacobi theta functions and Ramanujan’s corresponding theories. As a consequence, we rediscover that these operators resemble the identity operator as the density of the lattice grows. We also prove that the conjectural value of Landau’s constant is obtained as half the cubic arithmetic–geometric mean of \(\root 3 \of {2}\) and 1, which we believe to be a new result.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 115001 |
Seiten (von - bis) | 551 |
Seitenumfang | 582 |
Fachzeitschrift | Monatshefte für Mathematik |
Jahrgang | 206 |
Ausgabenummer | 3 |
DOIs | |
Publikationsstatus | Veröffentlicht - 22 Jan. 2025 |
Fördermittel
Open access funding provided by University of Vienna. This work was supported by the Austrian Science Fund (FWF): https://doi.org/10.55776/P33217 , https://doi.org/10.55776/TAI6 , and https://doi.org/10.55776/ESP649 .
ÖFOS 2012
- 101002 Analysis
- 101025 Zahlentheorie
- 101009 Geometrie
- 101032 Funktionalanalysis
Fingerprint
Untersuchen Sie die Forschungsthemen von „The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators“. Zusammen bilden sie einen einzigartigen Fingerprint.-
Hermite Multiplikator, Faltungen und Zeit-Frequenz-Analyse
Gumber, A. & Feichtinger, H.
1/10/24 → 30/09/27
Projekt: Forschungsförderung
-
-