Projekte pro Jahr
Abstract
The short-time heat kernel expansion of elliptic operators provides a link between local and global features of classical geometries. For many geometric structures related to (non-)involutive distributions, the natural differential operators tend to be Rockland, hence hypoelliptic. In this paper we establish a universal heat kernel expansion for formally selfadjoint non-negative Rockland differential operators on general closed filtered manifolds. The main ingredient is the analysis of parametrices in a recently constructed calculus adapted to these geometric structures. The heat expansion implies that the new calculus, a more general version of the Heisenberg calculus, also has a non-commutative residue. Many of the well known implications of the heat expansion such as, the structure of the complex powers, the heat trace asymptotics, the continuation of the zeta function, as well as Weyl's law for the eigenvalue asymptotics, can be adapted to this calculus. Other consequences include a McKean--Singer type formula for the index of Rockland differential operators. We illustrate some of these results by providing a more explicit description of Weyl's law for Rumin--Seshadri operators associated with curved BGG sequences over 5-manifolds equipped with a rank two distribution of Cartan type.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 337-389 |
Seitenumfang | 53 |
Fachzeitschrift | Journal of Geometric Analysis |
Jahrgang | 30 |
Ausgabenummer | 1 |
Frühes Online-Datum | 23 Jan. 2019 |
DOIs | |
Publikationsstatus | Veröffentlicht - Jan. 2020 |
ÖFOS 2012
- 101002 Analysis
- 101006 Differentialgeometrie
Fingerprint
Untersuchen Sie die Forschungsthemen von „The heat asymptotics on filtered manifolds“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 2 Abgeschlossen
-
Regularitätstheorie in Algebren verallgemeinerter Funktionen
Kunzinger, M., Nigsch, E., Vernaeve, H. & Dave, S.
1/11/17 → 30/04/22
Projekt: Forschungsförderung
-
Isoperimetrische Struktur von Anfangsdaten der Einstein-Gleichungen
1/01/17 → 31/12/24
Projekt: Forschungsförderung
Aktivitäten
- 5 Vortrag
-
Regularized determinants of the Rumin complex on nilmanifolds with (2,3,5) geometry
Stefan Haller (Invited speaker)
6 Juni 2024Aktivität: Vorträge › Vortrag › Science to Science
Datei -
Analytic torsion of the Rumin complex on filtered 5-manifolds with growth vector (2,3,5)
Stefan Haller (Vortragende*r)
27 Sept. 2022Aktivität: Vorträge › Vortrag › Science to Science
Datei -
Analytic torsion of (2,3,5) geometries
Stefan Haller (Vortragende*r)
22 Juli 2022Aktivität: Vorträge › Vortrag › Science to Science
Datei