The Josefson–Nissenzweig theorem and filters on ω

Witold Marciszewski, Damian Sobota (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

For a free filter F on ω, endow the space N F=ω∪{p F}, where p F∉ω, with the topology in which every element of ω is isolated whereas all open neighborhoods of p F are of the form A∪{p F} for A∈F. Spaces of the form N F constitute the class of the simplest non-discrete Tychonoff spaces. The aim of this paper is to study them in the context of the celebrated Josefson–Nissenzweig theorem from Banach space theory. We prove, e.g., that, for a filter F, the space N F carries a sequence ⟨μ n:n∈ω⟩ of normalized finitely supported signed measures such that μ n(f)→0 for every bounded continuous real-valued function f on N F if and only if F KZ, that is, the dual ideal F is Katětov below the asymptotic density ideal Z. Consequently, we get that if F KZ, then: (1) if X is a Tychonoff space and N F is homeomorphic to a subspace of X, then the space C p (X) of bounded continuous real-valued functions on X contains a complemented copy of the space c 0 endowed with the pointwise topology, (2) if K is a compact Hausdorff space and N F is homeomorphic to a subspace of K, then the Banach space C(K) of continuous real-valued functions on K is not a Grothendieck space. The latter result generalizes the well-known fact stating that if a compact Hausdorff space K contains a non-trivial convergent sequence, then the space C(K) is not Grothendieck.

OriginalspracheEnglisch
Seiten (von - bis)773-812
Seitenumfang40
FachzeitschriftArchive for Mathematical Logic
Jahrgang63
Ausgabenummer7-8
DOIs
PublikationsstatusVeröffentlicht - Nov. 2024

ÖFOS 2012

  • 101013 Mathematische Logik
  • 101022 Topologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „The Josefson–Nissenzweig theorem and filters on ω“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen