Projekte pro Jahr
Abstract
For a quiver Q with underlying graph Γ, we take M an associated toric Nakajima quiver variety. In this article, we give a direct relation between a specialization of the Tutte polynomial of Γ, the Kac polynomial of Q and the Poincaré polynomial of M. We do this by giving a cell decomposition of M indexed by spanning trees of Γ and ‘geometrizing’ the deletion and contraction operators on graphs. These relations have been previously established in Hausel–Sturmfels [6] and Crawley-Boevey–Van den Bergh [3], however the methods here are more hands-on.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1323-1339 |
Seitenumfang | 17 |
Fachzeitschrift | Proceedings of the Royal Society of Edinburgh Section A: Mathematics |
Jahrgang | 152 |
Ausgabenummer | 5 |
Frühes Online-Datum | 27 Okt. 2021 |
DOIs | |
Publikationsstatus | Veröffentlicht - Okt. 2022 |
ÖFOS 2012
- 101001 Algebra
- 101012 Kombinatorik
- 101009 Geometrie
Projekte
- 1 Laufend
-
Isoperimetrische Struktur von Anfangsdaten der Einstein-Gleichungen
1/01/17 → 31/12/24
Projekt: Forschungsförderung