Toward DMC Accuracy Across Chemical Space with Scalable Δ-QML

Bing Huang (Korresp. Autor*in), O. Anatole von Lilienfeld (Korresp. Autor*in), Jaron T. Krogel (Korresp. Autor*in), Anouar Benali (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

In the past decade, quantum diffusion Monte Carlo (DMC) has been demonstrated to successfully predict the energetics and properties of a wide range of molecules and solids by numerically solving the electronic many-body Schrödinger equation. With O(N3) scaling with the number of electrons N, DMC has the potential to be a reference method for larger systems that are not accessible to more traditional methods such as CCSD(T). Assessing the accuracy of DMC for smaller molecules becomes the stepping stone in making the method a reference for larger systems. We show that when coupled with quantum machine learning (QML)-based surrogate methods, the computational burden can be alleviated such that quantum Monte Carlo (QMC) shows clear potential to undergird the formation of high-quality descriptions across chemical space. We discuss three crucial approximations necessary to accomplish this: the fixed-node approximation, universal and accurate references for chemical bond dissociation energies, and scalable minimal amons-set-based QML (AQML) models. Numerical evidence presented includes converged DMC results for over 1000 small organic molecules with up to five heavy atoms used as amons and 50 medium-sized organic molecules with nine heavy atoms to validate the AQML predictions. Numerical evidence collected for Δ-AQML models suggests that already modestly sized QMC training data sets of amons suffice to predict total energies with near chemical accuracy throughout chemical space.
OriginalspracheEnglisch
Seiten (von - bis)1711–1721
Seitenumfang11
FachzeitschriftJournal of Chemical Theory and Computation
Jahrgang19
Ausgabenummer6
Frühes Online-Datum1 März 2023
DOIs
PublikationsstatusVeröffentlicht - 28 März 2023

ÖFOS 2012

  • 103025 Quantenmechanik
  • 103043 Computational Physics
  • 104022 Theoretische Chemie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Toward DMC Accuracy Across Chemical Space with Scalable Δ-QML“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen