Projekte pro Jahr
Abstract
We report modifications of the ph-AFQMC algorithm that allow the use of large time steps and reliable time step extrapolation. Our modified algorithm eliminates size-consistency errors present in the standard algorithm when large time steps are employed. We investigate various methods to approximate the exponential of the one-body operator within the AFQMC framework, distinctly demonstrating the superiority of Krylov methods over the conventional Taylor expansion. We assess various propagators within AFQMC and demonstrate that the Split-2 propagator is the optimal method, exhibiting the smallest time-step errors. For the HEAT set molecules, the time-step extrapolated energies deviate on average by only 0.19 kcal/mol from the accurate small time-step energies. For small water clusters, we obtain accurate complete basis-set binding energies using time-step extrapolation with a mean absolute error of 0.07 kcal/mol compared to CCSD(T). Using large time-step ph-AFQMC for the N2 dimer, we show that accurate bond lengths can be obtained while reducing CPU time by an order of magnitude.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 4205–4217 |
Seitenumfang | 13 |
Fachzeitschrift | Journal of Chemical Theory and Computation |
Jahrgang | 20 |
Ausgabenummer | 10 |
Frühes Online-Datum | 15 Mai 2024 |
DOIs | |
Publikationsstatus | Veröffentlicht - 28 Mai 2024 |
ÖFOS 2012
- 103006 Chemische Physik
- 103043 Computational Physics
Projekte
- 1 Laufend
-
Auxiliary field quantum Monte Carlo in der PAW Methode
1/08/20 → 31/07/25
Projekt: Forschungsförderung