Unique jet determination of CR maps into Nash sets

Bernhard Lamel, Nordine Mir (Korresp. Autor*in), Guillaume Rond

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Let M⊂CN be a real-analytic CR submanifold, M⊂CN a Nash set and EM the set of points in M of D'Angelo infinite type. We show that if M is minimal, then, for every point p∈M, and for every pair of germs of C-smooth CR maps f,g:(M,p)→M, there exists an integer k=kp such that if f and g have the same k-jets at p, and do not send M into EM, then necessarily f=g. Furthermore, the map p↦kp may be chosen to be bounded on compact subsets of M. As a consequence, we derive the finite jet determination property for pairs of germs of CR maps from minimal real-analytic CR submanifolds in CN into Nash subsets in CN of D'Angelo finite type, for arbitrary N,N≥2.

OriginalspracheEnglisch
Aufsatznummer109271
FachzeitschriftAdvances in Mathematics
Jahrgang432
DOIs
PublikationsstatusVeröffentlicht - 1 Nov. 2023

ÖFOS 2012

  • 101002 Analysis
  • 101009 Geometrie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Unique jet determination of CR maps into Nash sets“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen