Universal approximation property of neural stochastic differential equations

Anna Paula Kwossek (Korresp. Autor*in), David J. Prömel, Josef Teichmann

Veröffentlichungen: Working PaperPreprint

Abstract

We identify various classes of neural networks that are able to approximate continuous functions locally uniformly subject to fixed global linear growth constraints. For such neural networks the associated neural stochastic differential equations can approximate general stochastic differential equations, both of Itô diffusion type, arbitrarily well. Moreover, quantitative error estimates are derived for stochastic differential equations with sufficiently regular coefficients.
OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 20 März 2025

ÖFOS 2012

  • 102019 Machine Learning
  • 101019 Stochastik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Universal approximation property of neural stochastic differential equations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen