Projekte pro Jahr
Abstract
Machine learning (ML) models require an extensive, user-driven selection of molecular descriptors in order to learn from chemical structures to predict actives and inactives with a high reliability. In addition, privacy concerns often restrict the access to sufficient data, leading to models with a narrow chemical space. Therefore, we propose a framework of re-trainable models that can be transferred from one local instance to another, and further allow a less extensive descriptor selection. The models are shared via a Jupyter Notebook, allowing the evaluation and implementation of a broader chemical space by keeping most of the tunable parameters pre-defined. This enables the models to be updated in a decentralized, facile, and fast manner. Herein, the method was evaluated with six transporter datasets (BCRP, BSEP, OATP1B1, OATP1B3, MRP3, P-gp), which revealed the general applicability of this approach.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 54 |
Seitenumfang | 9 |
Fachzeitschrift | Journal of Cheminformatics |
Jahrgang | 14 |
Ausgabenummer | 1 |
DOIs | |
Publikationsstatus | Veröffentlicht - 13 Aug. 2022 |
ÖFOS 2012
- 301207 Pharmazeutische Chemie
Projekte
- 1 Abgeschlossen
-
eTRANSAFE: Enhancing TRANslational SAFEty Assessment through Integrative Knowledge Management
Ecker, G., Dangl, A., Hemmerich, J., Smajic, A., Grandits, M., Kaiser, F. & Schwarzenböck, M.
1/09/17 → 28/02/23
Projekt: Forschungsförderung