Utilizing Genetic Programming to Enhance Polygenic Risk Score Calculation

Martin Hurta, Jana Schwarzerová, Thomas Nägele, Wolfram Weckwerth, Valentine Provaznik, Lukas Sekanina

Veröffentlichungen: Beitrag in BuchBeitrag in KonferenzbandPeer Reviewed

Abstract

The polygenic risk score has proven to be a valuable tool for assessing an individual's genetic predisposition to phenotype (disease) within biomedicine in recent years. However, traditional regression-based methods for polygenic risk scores calculation have limitations that can impede their accuracy and predictive power. This study introduces an innovative approach to enhance polygenic risk scores calculation through the application of genetic programming. By harnessing the power of genetic programming, we aim to overcome the limitations of traditional regression techniques and improve the accuracy of polygenic risk scores predictions. Specifically, we showed that a polygenic risk score generated through Cartesian genetic programming yielded comparable or even more robust statistical distinctions between groups that we evaluated within three independent case studies.
OriginalspracheEnglisch
Titel2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Herausgeber (Verlag)IEEE
Seiten3782-3787
Seitenumfang6
ISBN (elektronisch)979-8-3503-3748-8
ISBN (Print)979-8-3503-3749-5
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023 - Istanbul, Türkei
Dauer: 5 Dez. 20238 Dez. 2023

Publikationsreihe

ReiheIEEE International Conference on Bioinformatics and Biomedicine

Konferenz

Konferenz2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
Land/GebietTürkei
OrtIstanbul
Zeitraum5/12/238/12/23

ÖFOS 2012

  • 106005 Bioinformatik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Utilizing Genetic Programming to Enhance Polygenic Risk Score Calculation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen