Visualizing small-scale subsurface NH3 and pH dynamics surrounding nitrogen fertilizer granules and impacts on nitrification activity

Theresa Merls, Christopher Sedlacek, Petra Pjevac, Lucia Fuchslueger, Taru Sandén, Heide Spiegel, Klaus Koren (Korresp. Autor*in), Andrew Giguere (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

In agricultural soils, nitrogen (N) fertilizer is typically applied as ammonium salts or urea, and undergoes microbially mediated oxidation. However, insights regarding substrate concentrations nitrifiers are exposed to in the zones immediately surrounding N fertilizer granules remain unexamined, as well as how this affects the activity or inhibition of nitrifier groups adapted to different ranges of ammonia (NH3) concentrations. To examine millimeter scale changes in soil chemistry after sub-surface fertilizer granule application with high spatiotemporal resolution, we applied a newly developed NH3 and pH planar optical sensor (optode) system. With this system, we visualized in situ subsurface NH3 production, diffusion, and associated pH shifts in an agricultural soil following the application (from 5 min up to 65.5 h) of ammonium chloride (NH4Cl) or urea granules in a laboratory study. Ammonia from both NH4Cl and urea granules diffused up to 1.5 and 2 cm and reached maximum concentrations of >49 and >130 ppmv, respectively. Spatially informed destructive subsampling (0.5–2 cm from granules) revealed that nitrate accumulation was greatest closest (0.5–1 cm) to the ammonium chloride granules, while nitrite was not detected. In contrast, urea application resulted in both nitrite and nitrate accumulation, with the highest concentrations detected furthest (1.5–2 cm) from urea granules. Urea hydrolysis also caused a significant localized pH increase, while ammonium chloride caused a circular elevated pH zone migrating outwards leaving a decreased pH at the center. Transcription of the ammonia-oxidizing bacterial amoA gene was highest in areas furthest (1.5–2 cm) from the urea granules, while there were no significant differences in amoA transcription with increasing distance from the NH4Cl granules. Ammonia-oxidizing archaea and comammox amoA transcripts were not detected. This study is the first to directly visualize small-scale subsurface changes in NH3 concentration and pH after fertilizer granule application and relate these to nitrification activity.
OriginalspracheEnglisch
Aufsatznummer109273
Seitenumfang12
FachzeitschriftSoil Biology and Biochemistry
Jahrgang189
Frühes Online-Datum18 Dez. 2023
DOIs
PublikationsstatusVeröffentlicht - 1 Feb. 2024

ÖFOS 2012

  • 106026 Ökosystemforschung
  • 106022 Mikrobiologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Visualizing small-scale subsurface NH3 and pH dynamics surrounding nitrogen fertilizer granules and impacts on nitrification activity“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen