Experimental investigation of aerosol composition and growth rates

  • Wimmer, Daniela (Project Lead)

Project: Research funding

Project Details

Abstract

Atmospheric aerosol particles have a relevant impact on human lives. Human health is affected, because the aerosol particles enter the respiratory system and can settle there. This can subsequently lead to serious health problems. Furthermore, the aerosol particles influence through direct and indirect interactions with sunlight, directly and indirectly the Earth's climate. Primary aerosol particles are emitted constantly into the atmosohere from various anthropogenic and natural sources. Secondary aerosol particles are formed by condensation of low-volatile gaseous compounds in the atmosphere spontaneously. This newly formed molecules can grow to larger particles and act subsequently as a cloud condensation nuclei, which then serve as the basis for cloud droplets. Model studies have shown that these freshly formed aerosol particles are responsible for about 50% of the global cloud condensation nuclei concentration. Intensive experimental and theoretical work have been performed in the past 20 years, to deepen the understanding of the mechanism underlying the formation processes.

The project represents an experimental study of the chemical composition of atmospheric aerosol particles. The measurements are used to understand the physical and chemical properties of the newly formed aerosol particles. The development of measuring methods for the detection of the smallest aerosol particles has evolved rapidly in recent years. The chemical composition of the initial cluster structures can range in size up to about 2 nm (nm = nanometer = 2 * 10-9 meters) can be determined by high resolution mass spectrometry. Aerosol particles having a diameter greater than 10 nm can be chemically and physically analyzed with various methods.

The proposed method is intended to close the gap in the size range of currently available instrumentation. The prioject aims at determining the chemical composition and also the particle growth rates in the 2-4 nm size range. The particle growth rates determine the climatic relevance of the newly formed particles, as they only serve as cloud condensation nuclei starting from a size of about 50-100 nm. The proposed methods combine electrical methods which are used to select the size of the measured aerosol particles and condensation methods by which the particles are counted. The condensation process allows to indirectly determine the chemical composition of the particles and the size selection of the particles allows the determination of their growth rates. The proposed project includes laboratory tests and field measurements at different locations (rural and urban areas) to evaluate the differences in particle characteristics between areas close to anthropogenic sources and more rural areas.
StatusFinished
Effective start/end date1/09/1631/08/19

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 11 - Sustainable Cities and Communities
  • SDG 13 - Climate Action

Keywords

  • nanoparticles
  • chemical composition
  • nanoparticle growth
  • Condensation particle counters
  • Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method

    He, X. C., Iyer, S., Sipilä, M., Ylisirniö, A., Peltola, M., Kontkanen, J., Baalbaki, R., Simon, M., Kürten, A., Tham, Y. J., Pesonen, J., Ahonen, L. R., Amanatidis, S., Amorim, A., Baccarini, A., Beck, L., Bianchi, F., Brilke, S., Chen, D., Chiu, R., & 59 othersCurtius, J., Dada, L., Dias, A., Dommen, J., Donahue, N. M., Duplissy, J., El Haddad, I., Finkenzeller, H., Fischer, L., Heinritzi, M., Hofbauer, V., Kangasluoma, J., Kim, C., Koenig, T. K., Kubečka, J., Kvashnin, A., Lamkaddam, H., Lee, C. P., Leiminger, M., Li, Z., Makhmutov, V., Xiao, M., Marten, R., Nie, W., Onnela, A., Partoll, E., Petäjä, T., Salo, V. T., Schuchmann, S., Steiner, G., Stolzenburg, D., Stozhkov, Y., Tauber, C., Tomé, A., Väisänen, O., Vazquez-Pufleau, M., Volkamer, R., Wagner, A. C., Wang, M., Wang, Y., Wimmer, D., Winkler, P. M., Worsnop, D. R., Wu, Y., Yan, C., Ye, Q., Lehtinen, K., Nieminen, T., Manninen, H. E., Rissanen, M., Schobesberger, S., Lehtipalo, K., Baltensperger, U., Hansel, A., Kerminen, V. M., Flagan, R. C., Kirkby, J., Kurtén, T. & Kulmala, M., 2021, In: Aerosol Science and Technology. 55, 2, p. 231–242 12 p.

    Publications: Contribution to journalArticlePeer Reviewed

    Open Access
  • Role of iodine oxoacids in atmospheric aerosol nucleation

    He, X. C., Tham, Y. J., Dada, L., Wang, M., Finkenzeller, H., Stolzenburg, D., Iyer, S., Simon, M., Kürten, A., Shen, J., Rörup, B., Rissanen, M., Schobesberger, S., Baalbaki, R., Wang, D. S., Koenig, T. K., Jokinen, T., Sarnela, N., Beck, L. J., Almeida, J., & 84 othersAmanatidis, S., Amorim, A., Ataei, F., Baccarini, A., Bertozzi, B., Bianchi, F., Brilke, S., Caudillo, L., Chen, D., Chiu, R., Chu, B., Dias, A., Ding, A., Dommen, J., Duplissy, J., Haddad, I. E., Carracedo, L. G., Granzin, M., Hansel, A., Heinritzi, M., Hofbauer, V., Junninen, H., Kangasluoma, J., Kemppainen, D., Kim, C., Kong, W., Krechmer, J. E., Kvashin, A., Laitinen, T., Lamkaddam, H., Lee, C. P., Lehtipalo, K., Leiminger, M., Li, Z., Makhmutov, V., Manninen, H. E., Marie, G., Marten, R., Mathot, S., Mauldin, R. L., Mentler, B., Möhler, O., Müller, T., Nie, W., Onnela, A., Petäjä, T., Pfeifer, J., Philippov, M., Ranjithkumar, A., Saiz-Lopez, A., Salma, I., Scholz, W., Schuchmann, S., Schulze, B., Steiner, G., Stozhkov, Y., Tauber, C., Tomé, A., Thakur, R. C., Väisänen, O., Vazquez-Pufleau, M., Wagner, A. C., Wang, Y., Weber, S. K., Winkler, P. M., Wu, Y., Xiao, M., Yan, C., Ye, Q., Ylisirniö, A., Zauner-Wieczorek, M., Zha, Q., Zhou, P., Flagan, R. C., Curtius, J., Baltensperger, U., Kulmala, M., Kerminen, V. M., Kurtén, T., Donahue, N. M., Volkamer, R., Kirkby, J., Worsnop, D. R. & Sipilä, M., 5 Feb 2021, In: Science. 371, 6529, p. 589-595 7 p.

    Publications: Contribution to journalArticlePeer Reviewed

  • The driving factors of new particle formation and growth in the polluted boundary layer

    Xiao, M., Hoyle, C. R., Dada, L., Stolzenburg, D., Kürten, A., Wang, M., Lamkaddam, H., Garmash, O., Mentler, B., Molteni, U., Baccarini, A., Simon, M., He, X. C., Lehtipalo, K., Ahonen, L. R., Baalbaki, R., Bauer, P. S., Beck, L., Bell, D., Bianchi, F., & 59 othersBrilke, S., Chen, D., Chiu, R., Dias, A., Duplissy, J., Finkenzeller, H., Gordon, H., Hofbauer, V., Kim, C., Koenig, T. K., Lampilahti, J., Lee, C. P., Li, Z., Mai, H., Makhmutov, V., Manninen, H. E., Marten, R., Mathot, S., Mauldin, R. L., Nie, W., Onnela, A., Partoll, E., Petäjä, T., Pfeifer, J., Pospisilova, V., Quéléver, L. L. J., Rissanen, M., Schobesberger, S., Schuchmann, S., Stozhkov, Y., Tauber, C., Tham, Y. J., Tomé, A., Vazquez-Pufleau, M., Wagner, A. C., Wagner, R., Wang, Y., Weitz, L., Wimmer, D., Wu, Y., Yan, C., Ye, P., Ye, Q., Zha, Q., Zhou, X., Amorim, A., Carslaw, K., Curtius, J., Hansel, A., Volkamer, R., Winkler, P. M., Flagan, R. C., Kulmala, M., Worsnop, D. R., Kirkby, J., Donahue, N. M., Baltensperger, U., El Haddad, I. & Dommen, J., 27 Sept 2021, In: Atmospheric Chemistry and Physics. 21, 18, p. 14275-14291 17 p.

    Publications: Contribution to journalArticlePeer Reviewed

    Open Access