Adaptive short-term plasticity in the typical reading network

Sabrina Turker, P. Kuhnke, Franz Roman Schmid, V.K.M. Cheung, K. Weise, M. Knoke, Bettina Zeidler, Kenny Seidel, L. Eckert, Gesa Hartwigsen

Publications: Contribution to journalArticlePeer Reviewed

Abstract

The left temporo-parietal cortex (TPC) is crucial for phonological decoding, i.e., for learning and retaining sound-letter mappings, and appears hypoactive in dyslexia. Here, we tested the causal contribution of this area for reading in typical readers with transcranial magnetic stimulation (TMS) and explored the reading network's response with fMRI. By investigating the underlying neural correlates of stimulation-induced modulations of the reading network, we can help improve targeted interventions for individuals with dyslexia. 28 typical adult readers overtly read simple and complex words and pseudowords during fMRI after effective and sham TMS over the left TPC. To explore differences in functional activation and effective connectivity within the reading network, we performed univariate and multivariate analyses, as well as dynamic causal modeling. While TMS-induced effects on reading performance and brain activation showed large individual variability, multivariate analyses revealed a shift in activation in the left inferior frontal cortex for pseudoword reading after effective TMS. Furthermore, TMS increased effective connectivity from the left ventral occipito-temporal cortex to the left TPC. In the absence of effects on reading performance, the observed changes in task-related activity and the increase in functional coupling between the two core reading nodes suggest successful short-term compensatory reorganization in the reading network following TMS-induced disruption. This study is the first to explore neurophysiological changes induced by TMS to a core reading node in typical readers while performing an overt reading task. We provide evidence for remote stimulation effects and emphasize the relevance of functional interactions in the reading network.

Original languageEnglish
Article number120373
JournalNeuroImage
Volume281
DOIs
Publication statusPublished - 1 Nov 2023

Austrian Fields of Science 2012

  • 301405 Neuropathology
  • 301401 Brain research

Keywords

  • fMRI
  • Phonology
  • Pseudoword
  • Reading
  • Transcranial magnetic stimulation

Fingerprint

Dive into the research topics of 'Adaptive short-term plasticity in the typical reading network'. Together they form a unique fingerprint.

Cite this