Applying ant colony optimization to solve the single machine total tardiness problem

Andreas Bauer, Bernd Bullnheimer, Richard Hartl, Christine Strauss

Publications: Working paper

Abstract

Ant Colony Optimization is a relatively new meta-heuristic that has proven its quality and versatility on various combinatorial optimization problems such as the traveling salesman problem, the vehicle routing problem and the job shop scheduling problem. The paper introduces an Ant Colony Optimization approach to solve the problem of determining a job-sequence that minimizes the overall tardiness for a given set of jobs to be processed on a single, continuously available machine, the Single Machine Total Tardiness Problem. We experiment with various heuristic information as well as with variants for local search. Experiments with 250 benchmark problems with 50 and 100 jobs illustrate that Ant Colony Optimization is an adequate method to tackle the SMTTP. (author's abstract)
Original languageEnglish
Place of PublicationWien
PublisherSFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, Vienna.
Number of pages14
Volume42
Publication statusPublished - 1999

Austrian Fields of Science 2012

  • 101015 Operations research
  • 502052 Business administration
  • 502017 Logistics
  • 502050 Business informatics

Fingerprint

Dive into the research topics of 'Applying ant colony optimization to solve the single machine total tardiness problem'. Together they form a unique fingerprint.

Cite this