TY - JOUR
T1 - Asymmetric bistability of chiral particle orientation in viscous shear flows
AU - Zöttl, Andreas
AU - Tesser, Francesca
AU - Matsunaga, Daiki
AU - Laurent, Justine
AU - du Roure, Olivia
AU - Lindner, Anke
N1 - Publisher Copyright:
Copyright © 2023 the Author(s).
PY - 2023/10/31
Y1 - 2023/10/31
N2 - The migration of helical particles in viscous shear flows plays a crucial role in chiral particle sorting. Attaching a nonchiral head to a helical particle leads to a rheotactic torque inducing particle reorientation. This phenomenon is responsible for bacterial rheotaxis observed for flagellated bacteria as Escherichia coli in shear flows. Here, we use a high-resolution microprinting technique to fabricate microparticles with controlled and tunable chiral shape consisting of a spherical head and helical tails of various pitch and handedness. By observing the fully time-resolved dynamics of these microparticles in microfluidic channel flow, we gain valuable insights into chirality-induced orientation dynamics. Our experimental model system allows us to examine the effects of particle elongation, chirality, and head heaviness for different flow rates on the orientation dynamics, while minimizing the influence of Brownian noise. Through our model experiments, we demonstrate the existence of asymmetric bistability of the particle orientation perpendicular to the flow direction. We quantitatively explain the particle equilibrium orientations as a function of particle properties, initial conditions and flow rates, as well as the time-dependence of the reorientation dynamics through a theoretical model. The model parameters are determined using boundary element simulations, and excellent agreement with experiments is obtained without any adjustable parameters. Our findings lead to a better understanding of chiral particle transport and bacterial rheotaxis and might allow the development of targeted delivery applications.
AB - The migration of helical particles in viscous shear flows plays a crucial role in chiral particle sorting. Attaching a nonchiral head to a helical particle leads to a rheotactic torque inducing particle reorientation. This phenomenon is responsible for bacterial rheotaxis observed for flagellated bacteria as Escherichia coli in shear flows. Here, we use a high-resolution microprinting technique to fabricate microparticles with controlled and tunable chiral shape consisting of a spherical head and helical tails of various pitch and handedness. By observing the fully time-resolved dynamics of these microparticles in microfluidic channel flow, we gain valuable insights into chirality-induced orientation dynamics. Our experimental model system allows us to examine the effects of particle elongation, chirality, and head heaviness for different flow rates on the orientation dynamics, while minimizing the influence of Brownian noise. Through our model experiments, we demonstrate the existence of asymmetric bistability of the particle orientation perpendicular to the flow direction. We quantitatively explain the particle equilibrium orientations as a function of particle properties, initial conditions and flow rates, as well as the time-dependence of the reorientation dynamics through a theoretical model. The model parameters are determined using boundary element simulations, and excellent agreement with experiments is obtained without any adjustable parameters. Our findings lead to a better understanding of chiral particle transport and bacterial rheotaxis and might allow the development of targeted delivery applications.
KW - chirality
KW - fluid–structure interactions
KW - low Reynolds number flow
KW - microfluidics
UR - http://www.scopus.com/inward/record.url?scp=85175769986&partnerID=8YFLogxK
U2 - 10.1073/pnas.2310939120
DO - 10.1073/pnas.2310939120
M3 - Article
C2 - 37906645
AN - SCOPUS:85175769986
VL - 120
JO - Proceedings of the National Academy of Sciences of the United States of America (PNAS)
JF - Proceedings of the National Academy of Sciences of the United States of America (PNAS)
SN - 0027-8424
IS - 45
M1 - e2310939120
ER -