Atomic-Scale Oxygen-Mediated Etching of 2D MoS2 and MoTe2

E. Harriet Ahlgren (Corresponding author), Alexander Markevich, Sophie Scharinger, Bernhard Fickl, Georg Zagler, Felix Herterich, Niall McEvoy, Clemens Mangler, Jani Kotakoski

Publications: Contribution to journalArticlePeer Reviewed

Abstract

Oxidation is the main cause of degradation of many 2D materials, including transition metal dichalcogenides (TMDs), under ambient conditions. Some of the materials are more affected by oxidation than others. To elucidate the oxidation-induced degradation mechanisms in TMDs, the chemical effects in single layer MoS2 and MoTe2 are studied in situ in an electron microscope under controlled low-pressure oxygen environments at room temperature. MoTe2 is found to be reactive to oxygen, leading to significant degradation above a pressure of 1 × 10−7 torr. Curiously, the common hydrocarbon contamination found on practically all surfaces accelerates the damage rate significantly, by up to a factor of forty. In contrast to MoTe2, MoS2 is found to be inert under oxygen environment, with all observed structural changes being caused by electron irradiation only, leading to well-defined pores with high proportion of molybdenum nanowire-terminated edges. Using density functional theory calculations, a further atomic-scale mechanism leading to the observed oxygen-related degradation in MoTe2 is proposed, and the role of the carbon in the etching is explored. Together, the results provide an important insight into the oxygen-related deterioration of 2D materials under ambient conditions relevant in many fields.
Original languageEnglish
Article number2200987
Number of pages9
JournalAdvanced Materials Interfaces
Volume9
Issue number32
Early online date8 Sep 2022
DOIs
Publication statusPublished - 14 Nov 2022

Austrian Fields of Science 2012

  • 103042 Electron microscopy
  • 210004 Nanomaterials

Keywords

  • 2D
  • chemical etching
  • density functional theory
  • electron microscopy
  • MoS
  • (2)
  • MoTe
  • oxygen
  • MONOLAYER
  • OXIDATION
  • POINTS

Cite this