Abstract
Ectomycorrhizal fungi live in close association with their host plants and form complex interactions with bacterial/archaeal communities in soil. We investigated whether abundant or rare ectomycorrhizal fungi on root-tips of young beech trees (Fagus sylvatica) shape bacterial/archaeal communities. We sequenced 16S rRNA genes and fungal internal transcribed spacer regions of individual root-tips and used ecological networks to detect the tendency of certain assemblies of fungal and bacterial/archaeal taxa to inhabit the same root-tip (i.e. modularity). Individual ectomycorrhizal root-tips hosted distinct fungal communities associated with unique bacterial/archaeal communities. The structure of the fungal-bacterial/archaeal association was determined by both, dominant and rare fungi. Integrating our data in a conceptual framework suggests that the effect of rare fungi on the bacterial/archaeal communities of ectomycorrhizal root-tips contributes to assemblages of bacteria/archaea on root-tips. This highlights the potential impact of complex fine-scale interactions between root-tip associated fungi and other soil microorganisms for the ectomycorrhizal symbiosis.
Original language | English |
---|---|
Article number | 1261 |
Number of pages | 14 |
Journal | Communications Biology |
Volume | 5 |
Issue number | 1 |
DOIs | |
Publication status | E-pub ahead of print - 17 Nov 2022 |
Austrian Fields of Science 2012
- 106026 Ecosystem research
- 106022 Microbiology
Keywords
- fungal ecology
- microbial ecology
- symbiosis