Abstract
Fracturing in alkali feldspar during Na-K cation exchange with a NaCl-KCl salt melt was studied experimentally. Due to a marked composition dependence of the lattice parameters of alkali feldspar, any composition gradient arising from cation exchange causes coherency stress. If this stress exceeds a critical level fracturing occurs. Experiments were performed on potassium-rich gem-quality alkali feldspars with polished (010) and (001) surfaces. When the feldspar was shifted toward more sodium-rich compositions over more than about 10 mole %, a system of parallel cracks with regular crack spacing formed. The cracks have a general (h0l) orientation and do not correspond to any of the feldspar cleavages. The cracks are rather oriented (sub)-perpendicular to the direction of maximum tensile stress. The critical stress needed to initiate fracturing is about 325 MPa. The critical stress intensity factor for the propagation of mode I cracks, K, is estimated as 2.30-2.72 MPa m (73-86 MPa mm) from a systematic relation between characteristic crack spacing and coherency stress. An orientation mismatch of 18° between the crack normal and the direction of maximum tensile stress is ascribed to the anisotropy of the longitudinal elastic stiffness which has pronounced maxima in the crack plane and a minimum in the direction of the crack normal.
| Original language | English |
|---|---|
| Pages (from-to) | 1-16 |
| Number of pages | 16 |
| Journal | Physics and Chemistry of Minerals |
| Volume | 41 |
| DOIs | |
| Publication status | Published - 1 Jan 2013 |
Austrian Fields of Science 2012
- 105116 Mineralogy
- 1051 Geology, Mineralogy