TY - JOUR
T1 - Condensation of fallout glasses in the Hiroshima nuclear fireball resulting in oxygen mass-independent fractionation
AU - Asset, Nathan
AU - Chaussidon, Marc
AU - Villeneuve, Johan
AU - Charnoz, Sébastien
AU - Koeberl, Christian
AU - Wannier, Mario
AU - Robert, François
N1 - Publisher Copyright:
© 2023
PY - 2024/1/15
Y1 - 2024/1/15
N2 - A new kind of Hiroshima nuclear fallout, the Hiroshima glasses, was discovered around the Hiroshima Bay. Here, the chemical compositions and the silicon and oxygen triple isotope compositions were analyzed to understand the formation process of these new fallouts. The chemical analysis shows four different families of glasses: the melilitic glasses, the anorthositic glasses, the soda-lime glasses, and the silica glass. The silicon isotopic compositions show wide variations in the glasses, with δ30Si varying between -23.0 ± 1.8 ‰ and -1.5 ± 1.1 ‰. The oxygen isotopic compositions indicate the presence of mass-independent fractionation on ≈38 % of the analyses, reaching a Δ17O of -3.1 ± 0.6 ‰. The chemical and silicon isotopic compositions of the Hiroshima glasses show that these glasses were formed by condensation within the nuclear fireball. Our scenario for the Hiroshima glasses formation, tested by modeling (GGchem code), considers a rapid condensation (1.7–5.5 s) in the nuclear fireball (3200–1000 K) at atmospheric pressure with a gas resulting from a mixing between air, and vaporized water and city materials. Chemical reactions during the Hiroshima glasses condensation are the most probable source for the oxygen mass-independent fractionation. The formation of the Hiroshima glasses by condensation implies that they may be an analog to the first condensates in the solar system: Calcium-Aluminum-rich Inclusions (CAIs), which are found in chondrites. The Hiroshima glasses exhibit similarities with CAIs in their chemical and isotopic compositions (Si and O).
AB - A new kind of Hiroshima nuclear fallout, the Hiroshima glasses, was discovered around the Hiroshima Bay. Here, the chemical compositions and the silicon and oxygen triple isotope compositions were analyzed to understand the formation process of these new fallouts. The chemical analysis shows four different families of glasses: the melilitic glasses, the anorthositic glasses, the soda-lime glasses, and the silica glass. The silicon isotopic compositions show wide variations in the glasses, with δ30Si varying between -23.0 ± 1.8 ‰ and -1.5 ± 1.1 ‰. The oxygen isotopic compositions indicate the presence of mass-independent fractionation on ≈38 % of the analyses, reaching a Δ17O of -3.1 ± 0.6 ‰. The chemical and silicon isotopic compositions of the Hiroshima glasses show that these glasses were formed by condensation within the nuclear fireball. Our scenario for the Hiroshima glasses formation, tested by modeling (GGchem code), considers a rapid condensation (1.7–5.5 s) in the nuclear fireball (3200–1000 K) at atmospheric pressure with a gas resulting from a mixing between air, and vaporized water and city materials. Chemical reactions during the Hiroshima glasses condensation are the most probable source for the oxygen mass-independent fractionation. The formation of the Hiroshima glasses by condensation implies that they may be an analog to the first condensates in the solar system: Calcium-Aluminum-rich Inclusions (CAIs), which are found in chondrites. The Hiroshima glasses exhibit similarities with CAIs in their chemical and isotopic compositions (Si and O).
KW - Condensation
KW - Hiroshima fallouts
KW - Mass-independent fractionation
KW - Oxygen isotopes
KW - Silicon isotopes
UR - http://www.scopus.com/inward/record.url?scp=85183392643&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2023.118473
DO - 10.1016/j.epsl.2023.118473
M3 - Article
AN - SCOPUS:85183392643
SN - 0012-821X
VL - 626
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
M1 - 118473
ER -