TY - JOUR
T1 - Cultured rat aortic vascular smooth muscle cells do not express a functional TRPV1
AU - Blažević, Tina
AU - Ciotu, Cosmin I.
AU - Gold-Binder, Markus
AU - Heiss, Elke H.
AU - Fischer, Michael J.M.
AU - Dirsch, Verena M.
N1 - Publisher Copyright:
© 2023 Blažević et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/2
Y1 - 2023/2
N2 - We showed previously that capsaicin, an active compound of chili peppers, can inhibit platelet-derived growth factor-induced proliferation in primary rat vascular smooth muscle cells (VSMCs). The inhibition of BrdU incorporation by capsaicin in these cells was revoked by BCTC, which might be explained by a role of TRPV1 in VSMCs proliferation. To further pursue the hypothesis of a TRPV1-dependent effect of capsaicin, we investigated TRPV1 expression and function. Commercially available antibodies against two different TRPV1 epitopes (N-terminus and C-terminus) were rendered invalid in detecting TRPV1, as shown: i) in western blot experiments using control lysates of TRPV1-expressing (PC-12 and hTRPV1 transfected HEK293T) and TRPV1-downregulated (CRISPR/Cas gene edited A10) cells, and ii) by substantial differences in staining patterns between the applied antibodies using fluorescence confocal microscopy. The TRPV1 agonists capsaicin, resiniferatoxin, piperine and evodiamine did not increase intracellular calcium levels in primary VSMCs and in A10 cells. Using RT qPCR, we could detect a rather low TRPV1 expression in VSMCs at the mRNA level (Cp value around 30), after validating the primer pair in NGF-stimulated PC-12 cells. We conclude that rat vascular smooth muscle cells do not possess canonical TRPV1 channel activity, which could explain the observed antiproliferative effect of capsaicin.
AB - We showed previously that capsaicin, an active compound of chili peppers, can inhibit platelet-derived growth factor-induced proliferation in primary rat vascular smooth muscle cells (VSMCs). The inhibition of BrdU incorporation by capsaicin in these cells was revoked by BCTC, which might be explained by a role of TRPV1 in VSMCs proliferation. To further pursue the hypothesis of a TRPV1-dependent effect of capsaicin, we investigated TRPV1 expression and function. Commercially available antibodies against two different TRPV1 epitopes (N-terminus and C-terminus) were rendered invalid in detecting TRPV1, as shown: i) in western blot experiments using control lysates of TRPV1-expressing (PC-12 and hTRPV1 transfected HEK293T) and TRPV1-downregulated (CRISPR/Cas gene edited A10) cells, and ii) by substantial differences in staining patterns between the applied antibodies using fluorescence confocal microscopy. The TRPV1 agonists capsaicin, resiniferatoxin, piperine and evodiamine did not increase intracellular calcium levels in primary VSMCs and in A10 cells. Using RT qPCR, we could detect a rather low TRPV1 expression in VSMCs at the mRNA level (Cp value around 30), after validating the primer pair in NGF-stimulated PC-12 cells. We conclude that rat vascular smooth muscle cells do not possess canonical TRPV1 channel activity, which could explain the observed antiproliferative effect of capsaicin.
UR - http://www.scopus.com/inward/record.url?scp=85148085225&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0281191
DO - 10.1371/journal.pone.0281191
M3 - Article
C2 - 36787302
AN - SCOPUS:85148085225
VL - 18
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
IS - 2
M1 - e0281191
ER -