Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials

Gabriel Sigmund, Mehdi Gharasoo, Thorsten Hüffer, Thilo Hofmann

Publications: Contribution to journalArticlePeer Reviewed

Original languageEnglish
Pages (from-to)4583-4591
Number of pages9
JournalEnvironmental Science & Technology
Volume54
Issue number7
DOIs
Publication statusPublished - 7 Apr 2020

Austrian Fields of Science 2012

  • 105906 Environmental geosciences

Keywords

  • sorption
  • sorbents
  • carbon
  • organic compounds
  • Neural Networks
  • SINGLE
  • FREE-ENERGY RELATIONSHIPS
  • HERBICIDES
  • ADSORPTION
  • AQUEOUS-SOLUTION
  • THERMODYNAMICS
  • SULFAMETHAZINE
  • ACTIVATED CARBON
  • BIOCHAR
  • CORN STRAW

Fingerprint

Dive into the research topics of 'Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials'. Together they form a unique fingerprint.

Cite this