TY - JOUR
T1 - DNA intermediates of meiotic recombination in synchronous S. pombe at optimal temperature
AU - Hyppa, R.W.
AU - Fowler, K.R.
AU - Cipak, L.
AU - Gregan, J.
AU - Smith, G.R.
N1 - Funding Information:
Funding for open access charge: United States of America National Institutes of Health grants [GM031693 and GM032194 to G.R.S.] and Austrian Science Fund (FWF) grants [P23609 and P21437 to J.G.]. The European Community’s Seventh Framework Programme (FP7/2007-2013) grant agreement number [PERG07-GA-2010-268167 to L.C.] and grant agreement number [PCIG11-GA-2012-322300 to J.G.].
PY - 2014/1/7
Y1 - 2014/1/7
N2 - Crossovers formed by recombination between homologous chromosomes are important for proper homolog segregation during meiosis and for generation of genetic diversity. Optimal molecular analysis of DNA intermediates of recombination requires synchronous cultures. We previously described a mutant, pat1-as2, of the fission yeast Schizosaccharomyces pombe that undergoes synchronous meiosis at 25°C when an ATP analog is added to the culture. Here, we compare recombination intermediates in pat1-as2 at 25°C with those in the widely used pat1-114 temperature-sensitive mutant at 34°C, a temperature higher than optimal. DNA double-strand breaks at most hotspots are similarly abundant in the two conditions but, remarkably, a few hotspots are distinctly deficient at 25°C. In both conditions, Holliday junctions at DNA break hotspots form more frequently between sister chromatids than between homologs, but a novel species, perhaps arising from invasion by only one end of broken DNA, is more readily observed at 25°C. Our results confirm the validity of previous assays of recombination intermediates in S. pombe and provide new information on the mechanism of meiotic recombination.
AB - Crossovers formed by recombination between homologous chromosomes are important for proper homolog segregation during meiosis and for generation of genetic diversity. Optimal molecular analysis of DNA intermediates of recombination requires synchronous cultures. We previously described a mutant, pat1-as2, of the fission yeast Schizosaccharomyces pombe that undergoes synchronous meiosis at 25°C when an ATP analog is added to the culture. Here, we compare recombination intermediates in pat1-as2 at 25°C with those in the widely used pat1-114 temperature-sensitive mutant at 34°C, a temperature higher than optimal. DNA double-strand breaks at most hotspots are similarly abundant in the two conditions but, remarkably, a few hotspots are distinctly deficient at 25°C. In both conditions, Holliday junctions at DNA break hotspots form more frequently between sister chromatids than between homologs, but a novel species, perhaps arising from invasion by only one end of broken DNA, is more readily observed at 25°C. Our results confirm the validity of previous assays of recombination intermediates in S. pombe and provide new information on the mechanism of meiotic recombination.
UR - http://www.scopus.com/inward/record.url?scp=84891708726&partnerID=8YFLogxK
U2 - 10.1093/nar/gkt861
DO - 10.1093/nar/gkt861
M3 - Article
AN - SCOPUS:84891708726
SN - 0305-1048
VL - 42
SP - 359
EP - 369
JO - Nucleic Acids Research
JF - Nucleic Acids Research
IS - 1
ER -