Emergence of high-mass stars in complex fiber networks (EMERGE) V. From filaments to spheroids: the origin of the hub-filament systems

A. Hacar, R. Konietzka, D. Seifried, S. E. Clark, A. Socci, F. Bonanomi, A. Burkert, E. Schisano, J. Kainulainen, R. Smith

Publications: Contribution to journalArticlePeer Reviewed

Abstract

Identified as parsec-size, gas clumps at the junction of multiple filaments, hub-filament systems (HFS) play a crucial role during the formation of young clusters and high-mass stars. These HFS appear nevertheless to be detached from most galactic filaments when compared in the mass-length (M-L) phase-space. We aim to characterize the early evolution of HFS as part of the filamentary description of the interstellar medium. Combining previous scaling relations with new analytic calculations, we created a toy model to explore the different physical regimes described by the M-L diagram. Despite its simplicity, our model accurately reproduces several observational properties reported for filaments and HFS such as their expected typical aspect ratio ($A$), mean surface density ($\Sigma$), and gas accretion rate ($\dot{m}$). Moreover, this model naturally explains the different mass and length regimes populated by filaments and HFS, respectively. Our model predicts a dichotomy between filamentary ($A\geq 3$) and spheroidal ($A
Original languageEnglish
Article numberA69
Number of pages17
JournalAstronomy & Astrophysics
Volume694
DOIs
Publication statusPublished - Feb 2025

Austrian Fields of Science 2012

  • 103003 Astronomy
  • 103004 Astrophysics

Keywords

  • Astrophysics - Astrophysics of Galaxies
  • Astrophysics - Solar and Stellar Astrophysics

Fingerprint

Dive into the research topics of 'Emergence of high-mass stars in complex fiber networks (EMERGE) V. From filaments to spheroids: the origin of the hub-filament systems'. Together they form a unique fingerprint.

Cite this