Projects per year
Abstract
We report the levitation of a superconducting lead-tin sphere with 100 μm diameter (corresponding to a mass of 5.6 μg) in a static magnetic trap formed by two coils in an anti-Helmholtz configuration, with adjustable resonance frequencies up to 240 Hz. The center-of-mass motion of the sphere is monitored magnetically using a dc superconducting quantum interference device as well as optically and exhibits quality factors of up to 2.6×107. We also demonstrate 3D magnetic feedback control of the motion of the sphere. The setup is housed in a dilution refrigerator operating at 15 mK. By implementing a cryogenic vibration isolation system, we can attenuate environmental vibrations at 200 Hz by approximately 7 orders of magnitude. The combination of low temperature, large mass, and high quality factor provides a promising platform for testing quantum physics in previously unexplored regimes with high mass and long coherence times.
Original language | English |
---|---|
Article number | 043603 |
Number of pages | 7 |
Journal | Physical Review Letters |
Volume | 131 |
Issue number | 4 |
DOIs | |
Publication status | Published - 25 Jul 2023 |
Austrian Fields of Science 2012
- 103025 Quantum mechanics
Keywords
- quant-ph
-
-
IQLev: Inertial Sensing Based on Quantum-Enhanced Levitation Systems
Aspelmeyer, M. & Kiesel, T. N.
1/01/20 → 30/06/23
Project: Research funding
-
QLev4G: Quantum control of levitated massive mechanical systems: a new approach for gravitational quantum physics
Aspelmeyer, M. & Paulovics, V.
1/06/15 → 31/05/20
Project: Research funding