Abstract
Streptomyces noursei ATCC 11455 produces the antifungal polyene antibiotic nystatin containing the deoxysugar moiety mycosamine. Part of the deoxythymidyl diphosphate (TDP)-glucose dehydratase gene (gdhA) known to be involved in deoxysugar biosynthesis was amplified by PCR from genomic DNA of S. noursei ATCC 11455. A gene library for S. noursei was made and screened with the gdhA probe. Several overlapping phage clones covering about 30 kb of the S. noursei genome were physically mapped. A partial DNA sequencing analysis of this region resulted in the identification of several putative genes typical of macrolide antibiotic biosynthetic gene clusters. A gene-transfer system for S. noursei has been established, and gene deletion or disruption experiments within the putative biosynthetic gene cluster were performed. All of the knock-out mutants retained the ability to produce nystatin, suggesting that the identified gene cluster is not involved in biosynthesis of this antibiotic. Culture extracts from the wild-type strain and three knock-out mutants were analysed by TLC followed by a bioassay against Micrococcus luteus. Two antibacterial compounds were found to be synthesized by the wild-type strain while only one was produced by the mutants. This provided evidence for the involvement of the identified gene cluster in the biosynthesis of a presumably novel antibacterial macrolide antibiotic in S. noursei.
Original language | English |
---|---|
Pages (from-to) | 611-619 |
Number of pages | 9 |
Journal | Microbiology |
Volume | 146 |
Issue number | 3 |
Publication status | Published - Mar 2000 |
Externally published | Yes |
Austrian Fields of Science 2012
- 106022 Microbiology
Keywords
- Gene cluster
- Macrolide antibiotic
- Streptomyces noursei