Information transfer in mammalian glycan-based communication

Felix F Fuchsberger, Dongyoon Kim, Natalia Baranova, Hanka Vrban, Marten Kagelmacher, Robert Wawrzinek, Christoph Rademacher

Publications: Contribution to journalArticlePeer Reviewed

Abstract

Glycan-binding proteins, so-called lectins, are exposed on mammalian cell surfaces and decipher the information encoded within glycans translating it into biochemical signal transduction pathways in the cell. These glycan-lectin communication pathways are complex and difficult to analyze. However, quantitative data with single-cell resolution provide means to disentangle the associated signaling cascades. We chose C-type lectin receptors (CTLs) expressed on immune cells as a model system to study their capacity to transmit information encoded in glycans of incoming particles. In particular, we used nuclear factor kappa-B-reporter cell lines expressing DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), macrophage C-type lectin (MCL), dectin-1, dectin-2, and macrophage-inducible C-type lectin (MINCLE), as well as TNFαR and TLR-1&2 in monocytic cell lines and compared their transmission of glycan-encoded information. All receptors transmit information with similar signaling capacity, except dectin-2. This lectin was identified to be less efficient in information transmission compared to the other CTLs, and even when the sensitivity of the dectin-2 pathway was enhanced by overexpression of its co-receptor FcRγ, its transmitted information was not. Next, we expanded our investigation toward the integration of multiple signal transduction pathways including synergistic lectins, which is crucial during pathogen recognition. We show how the signaling capacity of lectin receptors using a similar signal transduction pathway (dectin-1 and dectin-2) is being integrated by compromising between the lectins. In contrast, co-expression of MCL synergistically enhanced the dectin-2 signaling capacity, particularly at low-glycan stimulant concentration. By using dectin-2 and other lectins as examples, we demonstrate how signaling capacity of dectin-2 is modulated in the presence of other lectins, and therefore, the findings provide insight into how immune cells translate glycan information using multivalent interactions.

Original languageEnglish
Article numbere69415
JournaleLife
Volume12
DOIs
Publication statusPublished - 20 Feb 2023

Austrian Fields of Science 2012

  • 106017 Glycobiology

Keywords

  • Animals
  • Lectins, C-Type/metabolism
  • Signal Transduction
  • NF-kappa B/metabolism
  • Monocytes/metabolism
  • Polysaccharides/metabolism
  • Mammals/metabolism
  • Innate immunity
  • Signal transduction
  • Signaling
  • Glycobiology
  • Signal integration
  • C-type lectins
  • computational biology
  • systems biology
  • cell biology
  • cell signaling
  • information theory
  • human
  • glycobiology

Fingerprint

Dive into the research topics of 'Information transfer in mammalian glycan-based communication'. Together they form a unique fingerprint.

Cite this