TY - JOUR
T1 - JWST Observations of Young protoStars (JOYS) Linked accretion and ejection in a Class I protobinary system
AU - Tychoniec, Łukasz
AU - van Gelder, Martijn L.
AU - van Dishoeck, Ewine F.
AU - Francis, Logan
AU - Rocha, Will R.M.
AU - Garatti, Alessio Caratti O.
AU - Beuther, Henrik
AU - Gieser, Caroline
AU - Justtanont, Kay
AU - Linnartz, Harold
AU - Le Gouellec, Valentin J.M.
AU - Perotti, Giulia
AU - Devaraj, Rangaswamy
AU - Tabone, Benoît
AU - Ray, Thomas P.
AU - Brunken, Nashanty G.C.
AU - Chen, Yuan
AU - Kavanagh, Patrick J.
AU - Klaassen, Pamela
AU - Slavicinska, Katerina
AU - Güdel, Manuel
AU - Östlin, Goran
N1 - Publisher Copyright:
© The Authors 2024.
PY - 2024
Y1 - 2024
N2 - Context. Accretion and ejection dictate the outcomes of star and planet formation processes. The mid-infrared (MIR) wavelength range offers key tracers of processes that have been difficult to detect and spatially resolve in protostars until now. Aims. We aim to characterize the interplay between accretion and ejection in the low-mass Class I protobinary system TMC1, comprising two young stellar objects: TMC1-W and TMC1-E at a 85 au separation. Methods. Using the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) observations in 5–28 µm range, we measured the intensities of emission lines of H2, atoms, and ions, for instance, the [Fe II] and [Ne II], and HI recombination lines. We analyzed the spatial distribution of the different species using the MIRI Medium Resolution Spectrometer (MRS) capabilities to spatially resolve emission at 0'.́2–0'.́7 scales. we compared these results with the corresponding Atacama Large Millimeter/submillimeter Array (ALMA) maps tracing cold gas and dust. Results. We detected H2 outflow coming from TMC1-E, with no significant H2 emission from TMC1-W. The H2 emission from TMC1-E outflow appears narrow and extends to wider opening angles with decreasing Eup from S(8) to S(1) rotational transitions, indicating the disk wind as its origin. The outflow from TMC1-E protostar shows spatially extended emission lines of [Ne II], [Ne III], [Ar II], and [Ar III], with their line ratios consistent with UV radiation as a source of ionization. With ALMA, we detected an accretion streamer infalling from >1000 au scales onto the TMC1-E component. The TMC1-W protostar powers a collimated jet, detected with [Fe II] and [Ni II], making it consistent with energetic flow. A much weaker ionized jet is observed from TMC1-E, and both jets appear strikingly parallel to each other, indicating that the disks are co-planar. TMC1-W is associated with strong emission from hydrogen recombination lines, tracing the accretion onto the young star. Conclusions. MIRI-MRS observations provide an unprecedented view of protostellar accretion and ejection processes on 20 au scales. Observations of a binary Class I protostellar system show that the two processes are clearly intertwined, with accretion from the envelope onto the disk influencing a wide-angle wind ejected on disk scales. Finally, the accretion from the protostellar disk onto the protostar is associated with the source launching a collimated high-velocity jet within the innermost regions of the disk.
AB - Context. Accretion and ejection dictate the outcomes of star and planet formation processes. The mid-infrared (MIR) wavelength range offers key tracers of processes that have been difficult to detect and spatially resolve in protostars until now. Aims. We aim to characterize the interplay between accretion and ejection in the low-mass Class I protobinary system TMC1, comprising two young stellar objects: TMC1-W and TMC1-E at a 85 au separation. Methods. Using the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) observations in 5–28 µm range, we measured the intensities of emission lines of H2, atoms, and ions, for instance, the [Fe II] and [Ne II], and HI recombination lines. We analyzed the spatial distribution of the different species using the MIRI Medium Resolution Spectrometer (MRS) capabilities to spatially resolve emission at 0'.́2–0'.́7 scales. we compared these results with the corresponding Atacama Large Millimeter/submillimeter Array (ALMA) maps tracing cold gas and dust. Results. We detected H2 outflow coming from TMC1-E, with no significant H2 emission from TMC1-W. The H2 emission from TMC1-E outflow appears narrow and extends to wider opening angles with decreasing Eup from S(8) to S(1) rotational transitions, indicating the disk wind as its origin. The outflow from TMC1-E protostar shows spatially extended emission lines of [Ne II], [Ne III], [Ar II], and [Ar III], with their line ratios consistent with UV radiation as a source of ionization. With ALMA, we detected an accretion streamer infalling from >1000 au scales onto the TMC1-E component. The TMC1-W protostar powers a collimated jet, detected with [Fe II] and [Ni II], making it consistent with energetic flow. A much weaker ionized jet is observed from TMC1-E, and both jets appear strikingly parallel to each other, indicating that the disks are co-planar. TMC1-W is associated with strong emission from hydrogen recombination lines, tracing the accretion onto the young star. Conclusions. MIRI-MRS observations provide an unprecedented view of protostellar accretion and ejection processes on 20 au scales. Observations of a binary Class I protostellar system show that the two processes are clearly intertwined, with accretion from the envelope onto the disk influencing a wide-angle wind ejected on disk scales. Finally, the accretion from the protostellar disk onto the protostar is associated with the source launching a collimated high-velocity jet within the innermost regions of the disk.
KW - accretion, accretion disks
KW - infrared: ISM
KW - ISM: jets and outflows
KW - stars: low-mass
KW - stars: protostars
KW - techniques: spectroscopic
UR - http://www.scopus.com/inward/record.url?scp=85197315869&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202348889
DO - 10.1051/0004-6361/202348889
M3 - Article
AN - SCOPUS:85197315869
SN - 0004-6361
VL - 687
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A36
ER -