Machine learning-based prediction of polaron-vacancy patterns on the TiO2(110) surface

Viktor C. Birschitzky (Corresponding author), Igor Sokolović, Michael Prezzi, Krisztián Palotás, Martin Setvín, Ulrike Diebold, Michele Reticcioli, Cesare Franchini

Publications: Contribution to journalArticlePeer Reviewed

Fingerprint

Dive into the research topics of 'Machine learning-based prediction of polaron-vacancy patterns on the TiO2(110) surface'. Together they form a unique fingerprint.

Material Science