Planar S-systems: Global stability and the center problem

Balázs Boros, Josef Hofbauer, Stefan Müller, Georg Regensburger

Publications: Contribution to journalArticlePeer Reviewed

Abstract

S-systems are simple examples of power-law dynamical systems (polynomial systems with real exponents). For planar S-systems, we study global stability of the unique positive equilibrium and solve the center problem. Further, we construct a planar S-system with two limit cycles.
Original languageEnglish
Pages (from-to)707-727
Number of pages21
JournalDiscrete and Continuous Dynamical Systems - Series A
Volume39
Issue number2
DOIs
Publication statusPublished - Feb 2019

Austrian Fields of Science 2012

  • 101004 Biomathematics

Keywords

  • Andronov-Hopf bifurcation
  • Bautin bifurcation
  • LAW
  • Power-law systems
  • center-focus problem
  • first integrals
  • focal values
  • global center
  • reversible systems
  • Focal values
  • Global center
  • Reversible systems
  • Center-focus problem
  • First integrals

Fingerprint

Dive into the research topics of 'Planar S-systems: Global stability and the center problem'. Together they form a unique fingerprint.

Cite this