Abstract
One of the striking features of many eukaryotes is the apparent amount of redundancy in coding and non-coding elements of their genomes. Despite the possible evolutionary advantages, there are fewer examples of redundant sequences in viral genomes, particularly those with RNA genomes. The factors constraining the maintenance of redundant sequences in present-day RNA virus genomes are not well known. Here, we use Tobacco etch virus, a plant RNA virus, to investigate the stability of genetically redundant sequences by generating viruses with potentially beneficial gene duplications. Subsequently, we tested the viability of these viruses and performed experimental evolution. We found that all gene duplication events resulted in a loss of viability or in a significant reduction in viralfitness. Moreover,uponanalyzing thegenomesof theevolved viruses,wealways observedthedeletionof the duplicated gene copy andmaintenance of the ancestral copy. Interestingly, there were clear differences in the deletion dynamics of the duplicated gene associated with the passage duration and the size and position of the duplicated copy. Based on the experimental data,wedeveloped a mathematical model to characterize the stability of genetically redundant sequences, and showed that fitness effects are not enough to predict genomic stability.Acontext-dependent recombination rate is also required, with the context being the duplicated gene and its position. Our results therefore demonstrate experimentally the deleterious nature of gene duplications in RNA viruses. Beside previously described constraints on genome size, we identified additional factors that reduce the likelihood of the maintenance of duplicated genes.
Original language | English |
---|---|
Pages (from-to) | 3065-3082 |
Number of pages | 18 |
Journal | Genome Biology and Evolution |
Volume | 8 |
Issue number | 9 |
DOIs | |
Publication status | Published - 7 Sep 2016 |
Austrian Fields of Science 2012
- 303034 Virology
- 106012 Evolutionary research
- 106014 Genomics
Keywords
- Experimental Evolution
- Gene Duplication
- Genome Stability
- Virus Evolution
Fingerprint
Dive into the research topics of 'Predicting the stability of homologous gene duplications in a plant RNA virus'. Together they form a unique fingerprint.Prizes
-
Genome Biology and Evolution Best Graduate Student Paper Award
Willemsen, Anouk (Recipient), 2017
Prize: Prize, award or honor