Projects per year
Abstract
Since their first discovery by Louis Dunoyer and Otto Stern, molecular beams have conquered research and technology. However, it has remained an outstanding challenge to isolate and photoionize beams of massive neutral polypeptides. Here we show that femtosecond desorption from a matrix-free sample in high vacuum can produce biomolecular beams at least 25 times more efficiently than nanosecond techniques. While it has also been difficult to photoionize large biomolecules, we find that tailored structures with an abundant exposure of tryptophan residues at their surface can be ionized by vacuum ultraviolet light. The combination of these desorption and ionization techniques allows us to observe molecular beams of neutral polypeptides with a mass exceeding 20,000 amu. They are composed of 50 amino acids – 25 tryptophan and 25 lysine residues – and 26 fluorinated alkyl chains. The tools presented here offer a basis for the preparation, control and detection of polypeptide beams.
Original language | English |
---|---|
Article number | 93 |
Number of pages | 8 |
Journal | Communications Chemistry |
Volume | 1 |
DOIs | |
Publication status | Published - 10 Dec 2018 |
Austrian Fields of Science 2012
- 104017 Physical chemistry
- 104002 Analytical chemistry
Projects
- 2 Finished
-
PROBIOTIQUS: Processing of biomolecular targets for interferometric quantum experiments
Arndt, M. & Paulovics, V.
1/04/13 → 31/03/18
Project: Research funding
-
CoQuS: Complex Quantum Systems
Aspelmeyer, M., Arndt, M. & Paulovics, V.
1/10/07 → 31/12/20
Project: Research funding