TY - JOUR
T1 - Resolving Photoinduced Femtosecond Three-Dimensional Solute-Solvent Dynamics through Surface Hopping Simulations
AU - Polonius, Severin
AU - Lehrner, David
AU - González, Leticia
AU - Mai, Sebastian
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
Accession Number
WOS:001228382500001
PubMed ID
38768386
PY - 2024/6/11
Y1 - 2024/6/11
N2 - Photoinduced dynamics in solution is governed by mutual solute-solvent interactions, which give rise to phenomena like solvatochromism, the Stokes shift, dual fluorescence, or charge transfer. Understanding these phenomena requires simulating the solute’s photoinduced dynamics and simultaneously resolving the three-dimensional solvent distribution dynamics. If using trajectory surface hopping (TSH) to this aim, thousands of trajectories are required to adequately sample the time-dependent three-dimensional solvent distribution functions, and thus resolve the solvent dynamics with sub-Ångstrom and femtosecond accuracy and sufficiently low noise levels. Unfortunately, simulating thousands of trajectories with TSH in the framework of hybrid quantum mechanical/molecular mechanical (QM/MM) can be prohibitively expensive when employing ab initio electronic structure methods. To tackle this challenge, we recently introduced a computationally efficient approach that combines efficient linear vibronic coupling models with molecular mechanics (LVC/MM) via electrostatic embedding [Polonius et al., JCTC 2023, 19, 7171-7186]. This method provides solvent-embedded, nonadiabatically coupled potential energy surfaces while scaling similarly to MM force fields. Here, we employ TSH with LVC/MM to unravel the photoinduced dynamics of two small thiocarbonyl compounds solvated in water. We describe how to estimate the number of trajectories required to produce nearly noise-free three-dimensional solvent distribution functions and present an analysis based on approximately 10,000 trajectories propagated for 3 ps. In the electronic ground state, both molecules exhibit in-plane hydrogen bonds to the sulfur atom. Shortly after excitation, these bonds are broken and reform perpendicular to the molecular plane on timescales that differ by an order of magnitude due to steric effects. We also show that the solvent relaxation dynamics is coupled to the electronic dynamics, including intersystem crossing. These findings are relevant to advance the understanding of the coupled solute-solvent dynamics of solvated photoexcited molecules, e.g., biologically relevant thio-nucleobases.
AB - Photoinduced dynamics in solution is governed by mutual solute-solvent interactions, which give rise to phenomena like solvatochromism, the Stokes shift, dual fluorescence, or charge transfer. Understanding these phenomena requires simulating the solute’s photoinduced dynamics and simultaneously resolving the three-dimensional solvent distribution dynamics. If using trajectory surface hopping (TSH) to this aim, thousands of trajectories are required to adequately sample the time-dependent three-dimensional solvent distribution functions, and thus resolve the solvent dynamics with sub-Ångstrom and femtosecond accuracy and sufficiently low noise levels. Unfortunately, simulating thousands of trajectories with TSH in the framework of hybrid quantum mechanical/molecular mechanical (QM/MM) can be prohibitively expensive when employing ab initio electronic structure methods. To tackle this challenge, we recently introduced a computationally efficient approach that combines efficient linear vibronic coupling models with molecular mechanics (LVC/MM) via electrostatic embedding [Polonius et al., JCTC 2023, 19, 7171-7186]. This method provides solvent-embedded, nonadiabatically coupled potential energy surfaces while scaling similarly to MM force fields. Here, we employ TSH with LVC/MM to unravel the photoinduced dynamics of two small thiocarbonyl compounds solvated in water. We describe how to estimate the number of trajectories required to produce nearly noise-free three-dimensional solvent distribution functions and present an analysis based on approximately 10,000 trajectories propagated for 3 ps. In the electronic ground state, both molecules exhibit in-plane hydrogen bonds to the sulfur atom. Shortly after excitation, these bonds are broken and reform perpendicular to the molecular plane on timescales that differ by an order of magnitude due to steric effects. We also show that the solvent relaxation dynamics is coupled to the electronic dynamics, including intersystem crossing. These findings are relevant to advance the understanding of the coupled solute-solvent dynamics of solvated photoexcited molecules, e.g., biologically relevant thio-nucleobases.
UR - http://www.scopus.com/inward/record.url?scp=85193946386&partnerID=8YFLogxK
U2 - 10.1021/acs.jctc.4c00169
DO - 10.1021/acs.jctc.4c00169
M3 - Article
AN - SCOPUS:85193946386
SN - 1549-9618
VL - 20
SP - 4738
EP - 4750
JO - Journal of Chemical Theory and Computation
JF - Journal of Chemical Theory and Computation
IS - 11
ER -