Scattering properties and internal structure of magnetic filament brushes

Elena S. Pyanzina (Corresponding author), Pedro A. Sánchez, Joan J. Cerdà, Tomás Sintes, Sofia Kantorovich

Publications: Contribution to journalArticlePeer Reviewed

Abstract

Practical applications of polymer brush-like systems rely on a clear understanding of their internal structure. In the case of magnetic nanoparticle filament brushes, the competition between bonding and nonbonding interactions-including long range magnetic dipole-dipole interactions-makes the microstructure of these polymer brush-like systems rather complex. On the other hand, the same interactions open up the possibility to manipulate the meso- and macroscopic responses of these systems by applying external magnetic fields or by changing the background temperature. In this study, we put forward an approach to extract information about the internal structure of a magnetic filament brush from scattering experiments. Our method is based on the mapping of the scattering profiles to the information about the internal equilibrium configurations of the brushes obtained from computer simulations. We show that the structure of the magnetic filament brush is strongly anisotropic in the direction perpendicular to the grafting surface, especially at low temperatures and external fields. This makes slice-by-slice scattering measurements a technique very useful for the study of such systems.

Original languageEnglish
Pages (from-to)2590 -2602
Number of pages13
JournalSoft Matter
Volume13
Issue number14
Early online date2017
DOIs
Publication statusPublished - 13 Mar 2017

Austrian Fields of Science 2012

  • 103015 Condensed matter
  • 103006 Chemical physics

Keywords

  • FABRICATION
  • FIELDS
  • FLUID
  • GISAXS
  • IN-SITU
  • LOCKING
  • NANOPARTICLE MONOLAYERS
  • RESPONSIVE POLYMERS
  • TRANSITIONS
  • X-RAY-SCATTERING

Fingerprint

Dive into the research topics of 'Scattering properties and internal structure of magnetic filament brushes'. Together they form a unique fingerprint.

Cite this