Sexual dimorphism in head structures of the weevil Rhopalapion longirostre (Olivier 1807) (Coleoptera: Curculionoidea): a response to ecological demands of egg deposition

Stephan Handschuh, John Plant, Hans Leo Nemeschkal

    Publications: Contribution to journalArticlePeer Reviewed

    Abstract

    Extreme sexually dimorphic phenotypes are frequently attributed to strong sexual selection but they can also arise as a consequence of different ecological demands. The evolutionary emergence of elongated rostra was a key event in the adaptive radiation of weevils. Exaggerated female rostra evolved in numerous weevil taxa, enabling females to bore long channels for egg deposition into various parts of host plants. The investigated ecological scenario involves three species of brentid weevils, all associated with the same host plant, Alcea rosea. The present study reveals that: (1) Rhopalapion longirostre bores egg channels into the buds, and the female rostrum is twice as long and its surface is smoother than in the male; (2) Alocentron curvirostre and Aspidapion validum live on the same host plant but use the stems for egg deposition; in these species, female rostra are not exaggerated; (3) the females of all three species possess a stronger mandible musculature than males; (4) the elongated female snout of R. longirostre is a response to the requirements of boring egg channels of maximal depth into the buds of the host plant; and (5) female muscle strength is an adaptation to boring into hard plant tissues, irrespective of rostrum length.
    Original languageEnglish
    Pages (from-to)642-660
    Number of pages19
    JournalBiological Journal of the Linnean Society: a journal of evolution
    Volume104
    Issue number3
    DOIs
    Publication statusPublished - 2011

    Austrian Fields of Science 2012

    • 106045 Theoretical biology

    Fingerprint

    Dive into the research topics of 'Sexual dimorphism in head structures of the weevil Rhopalapion longirostre (Olivier 1807) (Coleoptera: Curculionoidea): a response to ecological demands of egg deposition'. Together they form a unique fingerprint.

    Cite this