Abstract
In the context of anonymous games (i.e., games where the payoff of a player is, apart from his/her own action, determined by the distribution of the actions made by the other players), we present a model in which, generically (in a precise sense), finite-player games have strict pure strategy Nash equilibria if the number of agents is large. A key feature of our model is that payoff functions have differentiability properties. A consequence of our existence result is that, in our model, equilibrium distributions of non-atomic games are asymptotically implementable by pure strategy Nash equilibria of large finite-player games.
Original language | English |
---|---|
Pages (from-to) | 1055-1093 |
Number of pages | 39 |
Journal | Theoretical Economics |
Volume | 16 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jul 2021 |
Austrian Fields of Science 2012
- 502047 Economic theory
Keywords
- large games
- pure strategy
- Nash equilibrium
- NONCOOPERATIVE GAMES
- generic property
- Large games
- C72