Studying developmental variation with geometric morphometric image analysis (GMIA)

Christine Mayer, Brian D. Metscher, Gerd B. Müller, Philipp Mitteroecker (Corresponding author)

    Publications: Contribution to journalArticlePeer Reviewed

    Abstract

    The ways in which embryo development can vary across individuals of a population determine how genetic variation translates into adult phenotypic variation. The study of developmental variation has been hampered by the lack of quantitative methods for the joint analysis of embryo shape and the spatial distribution of cellular activity within the developing embryo geometry. By drawing from the strength of geometric morphometrics and pixel/voxel-based image analysis, we present a new approach for the biometric analysis of two-dimensional and threedimensional embryonic images. Well-differentiated structures are described in terms of their shape, whereas structures with diffuse boundaries, such as emerging cell condensations or molecular gradients, are described as spatial patterns of intensities. We applied this approach to microscopic images of the tail fins of larval and juvenile rainbow trout. Inter-individual variation of shape and cell density was found highly spatially structured across the tail fin and temporally dynamic throughout the investigated period.

    Original languageEnglish
    Article numbere115076
    JournalPLoS ONE
    Volume9
    Issue number12
    DOIs
    Publication statusPublished - 12 Dec 2014

    Austrian Fields of Science 2012

    • 106045 Theoretical biology

    Fingerprint

    Dive into the research topics of 'Studying developmental variation with geometric morphometric image analysis (GMIA)'. Together they form a unique fingerprint.

    Cite this