Systematics and character evolution of capitate hydrozoans

Davide Maggioni (Corresponding author), Peter Schuchert, Andrew N. Ostrovsky, Andrea Schiavo, Bert W. Hoeksema, Daniela Pica, Stefano Piraino, Roberto Arrigoni, Davide Seveso, Enrico Montalbetti, Paolo Galli, Simone Montano

Publications: Contribution to journalArticlePeer Reviewed

Abstract

Capitate hydrozoans are a morphologically and ecologically diverse hydrozoan suborder, currently including about 200 species. Being grouped in two clades, Corynida and Zancleida, these hydrozoans still show a number of taxonomic uncertainties at the species, genus and family levels. Many Capitata species established symbiotic relationships with other benthic organisms, including bryozoans, other cnidarians, molluscs and poriferans, as well as with planktonic dinoflagellates for mixotrophic relationships and with bacteria for thiotrophic ectosymbioses. Our study aimed at providing an updated and comprehensive phylogeny reconstruction of the suborder, at modelling the evolution of selected morphological and ecological characters, and at testing evolutionary relationships between the symbiotic lifestyle and the other characters, by integrating taxonomic, ecological and evolutionary data. The phylogenetic hypotheses here presented shed light on the evolutionary relationships within Capitata, with most families and genera being recovered as monophyletic. The genus Zanclea and family Zancleidae, however, were divided into four divergent clades, requiring the establishment of the new genus Apatizanclea and the new combinations for species in Zanclea and Halocoryne genera. The ancestral state reconstructions revealed that symbiosis arose multiple times in the evolutionary history of the Capitata, and that homoplasy is a common phenomenon in the group. Correlations were found between the evolution of symbiosis and morphological characters, such as the perisarc. Overall, our results highlighted that the use of genetic data and a complete knowledge of the life cycles are strongly needed to disentangle taxonomic and systematic issues in capitate hydrozoans. Finally, the colonization of tropical habitat appears to have influenced the evolution of a symbiotic lifestyle, playing important roles in the evolution of the group.

Original languageEnglish
Pages (from-to)107-134
Number of pages28
JournalCladistics
Volume40
Issue number2
DOIs
Publication statusPublished - Apr 2024

Austrian Fields of Science 2012

  • 105118 Palaeontology

Cite this