Top Quark Mass Calibration for Monte Carlo Event Generators -- An Update

Bahman Dehnadi, André H. Hoang (Corresponding author), Oliver L. Jin, Vicent Mateu

Publications: Contribution to journalArticlePeer Reviewed

Abstract

We generalize and update our former top quark mass calibration framework for Monte Carlo (MC) event generators based on the e + e hadron-level 2-jettiness τ 2 distribution in the resonance region for boosted tt¯ production, that was used to relate the Pythia 8.205 top mass parameter mtMC to the MSR mass mtMSR(R) and the pole mass mtpole . The current most precise direct top mass measurements specifically determine mtMC . The updated framework includes the addition of the shape variables sum of jet masses τ s and modified jet mass τ m, and the treatment of two more gap subtraction schemes to remove the O (Λ QCD) renormalon related to large-angle soft radiation. These generalizations entail implementing a more versatile shape-function fit procedure and accounting for a certain type of (m t/Q) 2 power corrections to achieve gap-scheme and observable independent results. The theoretical description employs boosted heavy-quark effective theory (bHQET) at next-to-next-to-logarithmic order (N 2LL), matched to soft-collinear effective theory (SCET) at N 2LL and full QCD at next-to-leading order (NLO), and includes the dominant top width effects. Furthermore, the software framework has been modernized to use standard file and event record formats. We update the top mass calibration results by applying the new framework to Pythia 8.305, Herwig 7.2 and Sherpa 2.2.11. Even though the hadron-level resonance positions produced by the three generators differ significantly for the same top mass parameter mtMC value, the calibration shows that these differences arise from the hadronization modeling. Indeed, we find that mtMC agrees with mtMSR (1 GeV) within 200 MeV for the three generators and differs from the pole mass by 350 to 600 MeV.

Original languageEnglish
Article number65
Number of pages71
JournalJournal of High Energy Physics
Volume2023
Issue number12
Early online date1 Sept 2023
DOIs
Publication statusPublished - 12 Dec 2023

Austrian Fields of Science 2012

  • 103012 High energy physics

Keywords

  • hep-ph
  • hep-ex
  • Effective Field Theories of QCD
  • Quark Masses
  • Top Quark

Fingerprint

Dive into the research topics of 'Top Quark Mass Calibration for Monte Carlo Event Generators -- An Update'. Together they form a unique fingerprint.

Cite this