Projects per year
Abstract
The van der Waals atomic solids of noble gases on metals at cryogenic temperatures were the first experimental examples of two-dimensional systems. Recently, such structures have also been created on surfaces under encapsulation by graphene, allowing studies at elevated temperatures through scanning tunnelling microscopy. However, for this technique, the encapsulation layer often obscures the arrangement of the noble gas atoms. Here we create Kr and Xe clusters in between two suspended graphene layers, and uncover their atomic structure through transmission electron microscopy. We show that small crystals (N < 9) arrange on the basis of the simple non-directional van der Waals interaction. Larger crystals show some deviations, possibly enabled by deformations in the encapsulating graphene lattice. We further discuss the dynamics of the clusters within the graphene sandwich, and show that although all the Xe clusters with up to N ≈ 100 remain solid, Kr clusters with already N ≈ 16 turn occasionally fluid under our experimental conditions (under a pressure of ~0.3 GPa). This study opens a way for the so-far unexplored frontier of encapsulated two-dimensional van der Waals solids with exciting possibilities for fundamental condensed-matter physics research and possible applications in quantum information technology.
Original language | English |
---|---|
Pages (from-to) | 762–767 |
Number of pages | 6 |
Journal | Nature Materials |
Volume | 23 |
Issue number | 6 |
Early online date | 11 Jan 2024 |
DOIs | |
Publication status | Published - Jun 2024 |
Austrian Fields of Science 2012
- 103015 Condensed matter
- 103018 Materials physics
-
-
Nanometer-scale chemical modification of 2D materials
Ahlgren, E. H. & Kotakoski, J.
14/08/19 → 13/08/21
Project: Research funding
-
Atomic control over 2D materials via ion beam manipulation
1/10/18 → 30/09/22
Project: Research funding